AVL eSuite 2021 R1

Description

AVL eSuite 2021 R1

The software developer AVL is pleased to announce the availability of AVL eSUITE 2021 R1 is a comprehensive solution that covers all aspects of powertrain concept, the e-motor, e-axle, power electronics, fuel cell, battery and control functions layout and integration.

Release 2021 R1
We are pleased to announce the latest software releases for the following solutions:


Virtual Fuel Cell Development - Components and Systems


The latest release of AVL’s Virtual Fuel Cell Development Solution – 2021R1 – includes various new features and functionalities for fuel cell analysis at system and component level. The following release note provides a short summary of the main highlights of this release. More specific details can be found in the product release notes of AVL CRUISE M and AVL FIRE M.

PEM Fuel Cell System Layout and Integration

Reduced Dimensionality PEMFC Model

The latest version of CRUISE M includes a new electrochemical model for proton exchange membrane fuel cell (PEMFC) simulation. The model covers the relevant physical domains of the stack and their interactions. This includes, for example, anode and cathode gas flow, electric network, and thermal network, as well as the electrochemical and transport processes in the membrane electrode assembly (MEA). With regards to channel flow direction, the domains are discretized in 1D while the MEA-related electrochemical and transport models feature a reduced dimensionality approach. The latter offers an optimum compromise between modeling depth and computational performance, with the underlying models ensuring full consistency in consideration of thermodynamics and electrochemistry.

The Reduced Dimensionality PEMFC Model consistently correlates cell performance with reactant concentrations, temperature, water content and current, and thus holds all essential causal relations. In terms of cell performance prediction, optional models can be applied for channel pressure drop evaluation, nitrogen cross-diffusion and membrane wetting.

 


Chemical Degradation Model

The new release of CRUISE M introduces a model for chemical degradation in PEM fuel cells. This model describes, depending of the fuel cell state, unwanted aging phenomena taking place mainly in the catalyst layer next to the membrane. This involves carbon corrosion, platinum oxidation, platinum redistribution and diffusion of platinum ions. The platinum particle size redistribution model considers – for a given number of discrete particle classes – particle detachment, attachment, Ostwald ripening and agglomeration.

The Chemical Degradation Model can be linked to the different fuel cell models from the CRUISE M library, with custom fuel cell models or even testbed data. The degradation model is ready to run straight from the component library, with the data bus connections, membrane properties, initial conditions and a series of reaction parameters seamlessly adaptable according to the user’s needs.

 

Mechanical Degradation Model

This release of CRUISE M also offers a model for the mechanical degradation of PEM fuel cells. The model describes the tension and deformation energy in the membrane. It considers changes of water content and temperature, as well as creep elongation due to clamping pressure. The basis for this approach is the Eyring model for viscous materials. It has been extended by including thermal and creep effects.

This whole degradation model is provided as standalone functionality. This enables it to be linked with the different fuel cell models from the CRUISE M library, with custom fuel cell models or even with testbed data.

The Mechanical Degradation Model is ready to run straight from the component library with example data from a WLTC cycle and tabulated material properties. Simulation engineers can easily adapt the cycle-related input data and material properties according to their modeling needs and modify maximum deformation pressure and actual clamping forces. The degradation model returns a series of results for detailed analysis and the fulfillment of the yield criterium and membrane state of health.

 

PEM Fuel Cell and Stack Multiphysics Analysis

Solid Oxide Fuel Cell and Solid Oxide Electrolyzer Cell

Solid Oxide Fuel Cell (SOFC) systems allow different non-hydrocarbon and hydrocarbon fuels to be used for highly efficient conversion from chemical energy to electricity. These are ideal for both automotive and non-automotive applications. The combination of fuel cell technology with Solid Oxide Electrolyzer (SOEC) systems for energy buffering is an attractive alternative to conventional technologies for flattening fluctuating electricity production.

The required operating temperatures between 600°C and 900°C impose a number of challenges regarding thermal behavior of SOFC and SOEC components (e.g. cell, interconnect, sealing). Of particular interest is the thermal loading of the stack during transient operation and heat-up.

To support the development and optimization of SOFC and SOEC at single cell and stack level, we have also extended the fuel cell module of AVL FIRE™ M to fully support the simulation of the transient multi-physics phenomena that govern component performance and thermal behavior.

The related simulation features and capabilities cover the broad variety of relevant physical phenomena, such as multi-component convective and diffusive mass transfer, heat transfer and electrochemistry, as well as internal hydrocarbon reforming and co-electrolysis. Chemical reactions in the negative electrode domain, hydrocarbon steam reforming and water gas shift reaction are now fully accounted for. Furthermore, the Property Database covers the new SOFC and SOEC-related material groups and additional materials.

The new model features and capabilities can be used to simulate both individual planar and tubular SOFC and SOEC cells as well as complete stacks. Steady state and transient simulations are fully supported. This includes simulations such as different load cycles and transient heat up processes.

Download